Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities

Identifieur interne : 000858 ( Main/Repository ); précédent : 000857; suivant : 000859

Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities

Auteurs : RBID : Pascal:13-0156763

Descripteurs français

English descriptors

Abstract

The size, shape, composition, and crystalline structures of noble metal nanoparticles are the key parameters in determining their electrocatalytic performance. Here, we report on a robust chemical-tethering approach to immobilizing gold nanoparticles onto transparent indium tin oxide (ITO) glass electrode surfaces to systematically investigate their size- and shape-dependent electrocatalysis toward a methanol oxidation reaction (MOR) and an oxygen reduction reaction (ORR). Monodisperse 20 nm nanospheres (NS20s), 45 nm nanospheres (NS45s), and 20 nm × 63 nm nanorods (NRs), which could be chemically tethered to ITO-surface-forming submonolayers without any aggregation, were synthesized. These nanoparticle-modified ITO electrodes exhibited strong electrocatalytic activities toward MOR and ORR, but their mass current densities were highly dependent on the particle sizes and shapes. For particles with similar shapes, the size determined the mass current densities: smaller particle sizes led to greater catalytic current densities per unit mass because of the greater surface-to-volume ratio (NS20s > NS45s). For particles with comparable sizes, the shape or crystalline structure governed the selectivity of the electrocatalytic reactions: NS45 exhibited a higher mass current density in MOR than did NRs because its dominant (111) facets were exposed, whereas NRs exhibited a higher mass current density in ORR because its dominant (100) facets were exposed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0156763

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities</title>
<author>
<name>YUE TANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Faculty of Engineering, Monash University</s1>
<s2>Clayton, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Clayton, VIC 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Melbourne Centre for Nanofabrication</s1>
<s2>Clayton, VIC 3168</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne Centre for Nanofabrication</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WENLONG CHENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Faculty of Engineering, Monash University</s1>
<s2>Clayton, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Clayton, VIC 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Melbourne Centre for Nanofabrication</s1>
<s2>Clayton, VIC 3168</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne Centre for Nanofabrication</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0156763</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0156763 INIST</idno>
<idno type="RBID">Pascal:13-0156763</idno>
<idno type="wicri:Area/Main/Corpus">000F45</idno>
<idno type="wicri:Area/Main/Repository">000858</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0743-7463</idno>
<title level="j" type="abbreviated">Langmuir</title>
<title level="j" type="main">Langmuir</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electrocatalysis</term>
<term>Electrodes</term>
<term>Gold</term>
<term>Indium Oxides</term>
<term>Nanoparticle</term>
<term>Ternary compound</term>
<term>Tin Oxides</term>
<term>Transition metal</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nanoparticule</term>
<term>Electrode</term>
<term>Or</term>
<term>Electrocatalyse</term>
<term>Métal transition</term>
<term>Indium Oxyde</term>
<term>Etain Oxyde</term>
<term>Composé ternaire</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Or</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The size, shape, composition, and crystalline structures of noble metal nanoparticles are the key parameters in determining their electrocatalytic performance. Here, we report on a robust chemical-tethering approach to immobilizing gold nanoparticles onto transparent indium tin oxide (ITO) glass electrode surfaces to systematically investigate their size- and shape-dependent electrocatalysis toward a methanol oxidation reaction (MOR) and an oxygen reduction reaction (ORR). Monodisperse 20 nm nanospheres (NS20s), 45 nm nanospheres (NS45s), and 20 nm × 63 nm nanorods (NRs), which could be chemically tethered to ITO-surface-forming submonolayers without any aggregation, were synthesized. These nanoparticle-modified ITO electrodes exhibited strong electrocatalytic activities toward MOR and ORR, but their mass current densities were highly dependent on the particle sizes and shapes. For particles with similar shapes, the size determined the mass current densities: smaller particle sizes led to greater catalytic current densities per unit mass because of the greater surface-to-volume ratio (NS20s > NS45s). For particles with comparable sizes, the shape or crystalline structure governed the selectivity of the electrocatalytic reactions: NS45 exhibited a higher mass current density in MOR than did NRs because its dominant (111) facets were exposed, whereas NRs exhibited a higher mass current density in ORR because its dominant (100) facets were exposed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0743-7463</s0>
</fA01>
<fA02 i1="01">
<s0>LANGD5</s0>
</fA02>
<fA03 i2="1">
<s0>Langmuir</s0>
</fA03>
<fA05>
<s2>29</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YUE TANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WENLONG CHENG</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemical Engineering, Faculty of Engineering, Monash University</s1>
<s2>Clayton, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Melbourne Centre for Nanofabrication</s1>
<s2>Clayton, VIC 3168</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>3125-3132</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20642</s2>
<s5>354000502475100370</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0156763</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Langmuir</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The size, shape, composition, and crystalline structures of noble metal nanoparticles are the key parameters in determining their electrocatalytic performance. Here, we report on a robust chemical-tethering approach to immobilizing gold nanoparticles onto transparent indium tin oxide (ITO) glass electrode surfaces to systematically investigate their size- and shape-dependent electrocatalysis toward a methanol oxidation reaction (MOR) and an oxygen reduction reaction (ORR). Monodisperse 20 nm nanospheres (NS20s), 45 nm nanospheres (NS45s), and 20 nm × 63 nm nanorods (NRs), which could be chemically tethered to ITO-surface-forming submonolayers without any aggregation, were synthesized. These nanoparticle-modified ITO electrodes exhibited strong electrocatalytic activities toward MOR and ORR, but their mass current densities were highly dependent on the particle sizes and shapes. For particles with similar shapes, the size determined the mass current densities: smaller particle sizes led to greater catalytic current densities per unit mass because of the greater surface-to-volume ratio (NS20s > NS45s). For particles with comparable sizes, the shape or crystalline structure governed the selectivity of the electrocatalytic reactions: NS45 exhibited a higher mass current density in MOR than did NRs because its dominant (111) facets were exposed, whereas NRs exhibited a higher mass current density in ORR because its dominant (100) facets were exposed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01H05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Electrode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electrodes</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Electrodo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Oro</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Electrocatalyse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrocatalysis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Electrocatálisis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Indium Oxyde</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium Oxides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio Óxido</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Etain Oxyde</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tin Oxides</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estaño Óxido</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>08</s5>
</fC03>
<fN21>
<s1>133</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000858 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000858 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0156763
   |texte=   Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024